ADVERTISEMENT

Core Collections In Plants: A Way To Optimize The Genetic Resources. Citrus As A Case Of Study For Fruit Trees

Germplasm banks (ex situ conservation in case of recalcitrant seeds) play an essential role to protect and maintain the genetic diversity of any crop and are the sources to obtain new varieties. These collections must be well characterized for their proper conservation and availability to be used as tools for researchers and breeders. When a germplasm bank is huge, it leads to difficulties in handling, space, costs, etc.

This is particularly important for fruit trees that have recalcitrant seeds and have to be maintained as living plants. Therefore, it is important to find a sub-collection of reduced size, that maintain the genetic diversity of the whole bank with the minimum possible number of accessions, which is called core collection (CC). These CCs allow the study of any character of interest and even to perform genetic association studies.

ADVERTISEMENT

Citrus is one of the most important fruit crops worldwide. It is formed by four basic taxa, pummelo, citron, papeda, and mandarins. The mandarin horticultural group (Citrus reticulata) has high variability and admixture between genotypes which have been involved in the genesis of currently cultivated spontaneous interspecific hybrids, including sweet orange, sour orange, clementine, and others. A total of 167 genotypes from two of the most important citrus collections (IVIA, Spain; INRA/CIRAD, France) were characterized with molecular markers (SSR, Indel, and SNPs) and phenotyped using 18 IPGRI (International Plant Genetic Resources Institute) descriptors.

In this study, several software packages (DARWin, PowerMarker and MSTRAT) and methods (Max length subtree, M strategy, simulated annealing and MinSD) were compared to define a mandarin CC, with two different aims: the maintenance of the maximum variability with the lowest number of samples, and to allow genetic association studies (low value and rapid Linkage Disequilibrium (LD) decay). The main parameters checked were the genetic variability (Ho and He) of the initial collection, the level of LD and the phenotypic diversity retention, which was used to validate the CCs obtained.

The Max length subtree function (ML) from DARWin software seemed to be the most appropriate method for establishing a CC in mandarins. It maintained 96.82% of the allelic richness with only 30 accessions, that represent 17.96% of the size of the initial collection. Besides it did not increase the LD (r2 value) of the initial collection and retained the vast majority of the phenotypic variability, therefore it could be used for studies focused on economically important traits (resistance to diseases and pests or fruit quality parameters).

However, a CC with 70 accessions would be more helpful for genetic association studies. As the MLsubtree sampling method was appropriate for citrus, it could be applied to other species to facilitate an efficient management of the genetic resources. Finally, any CC should be periodically revised, since other interesting genotypes or even new molecular markers could be included in the selected subsets in order to make the CC more dynamic.

ADVERTISEMENT

The study, Comparative analysis of core collection sampling methods for mandarin germplasm based on molecular and phenotypic data was recently published in the journal Annals of Applied Biology.

Comments

READ THIS NEXT

Is There A Hereditary Link Between Testicular And Ovarian Cancer?

Our research group at Roswell Park Comprehensive Cancer Center, led by Kirsten Moysich, PhD, MS, is specifically interested in studying […]

Balancing Capitalism, Modernization And Sustainable Development For Future Generations

Current human societies experience how rapid economic development, urbanization, and modernization worldwide come up with overexploitation of natural resources and […]

A Tale Of Two Parasites: How Loiasis Complicates Lymphatic Filariasis Elimination Efforts In Central Africa

Lymphatic filariasis (LF) is a debilitating tropical disease that affects 70+ million people and is the second leading cause of […]

A Challenge For Making Hard-to-fly Stuffs Fly: An Introduction Of Simple And Effective Methods For Protein MALDI-TOF MS

Mass spectrometry (MS) has been a powerful tool for analyzing the molecular weights of the biological components comprising our body. […]

Black Phosphorus: A Miracle Material For Future Biomedical Technology

Extensive and profound research in graphene has become a strong driver in the search for other 2 dimensional (2D) materials […]

miR-218-5p As A New Player In Uterine Vascular Transformation During Pregnancy

The placenta is a transient organ that serves as the interface between the fetus and the mother. It has a […]

The Tides Of Mercury

Published by Gregor Steinbrügge Institute for Geophysics, University of Texas at Austin These findings are described in the article entitled […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?