ADVERTISEMENT

Cells That Bridge Bone And Teeth Are A Novel Tool To Study Complex Bone Diseases

Those of us that have worn braces during childhood have probably never realized that this force on teeth evokes unique cellular responses of the cells that are located in the tiny gap of approximately 0.1 mm between the tooth and the bone socket into which the tooth is embedded. Teeth migrate through bone by induction of bone break-down at the ‚Äúpull‚ÄĚ-side and by inducing bone formation at the ‚Äúpush‚ÄĚ-side.

The space between tooth and bone is the periodontal ligament, and, similar to muscle-to-bone ligaments that are more commonly known, fibroblasts from this ligament secure tight anchoring of teeth into bone.

ADVERTISEMENT

Cells from the periodontal ligament can be isolated and propagated from extracted teeth, such as wisdom teeth and teeth that have to be extracted for orthodontic reasons. Researchers from The Academic Centre for Dentistry Amsterdam, The Netherlands, together with VU Medical Centre Amsterdam,¬†have used this model to study both bone formation and bone degradation in a rare and complex bone disease ‚ÄĒ fibrodysplasia ossificans progressiva, FOP. The cells can be stimulated in either direction: towards bone formation, or towards providing the requirements for differentiation of osteoclasts, the bone degrading cells. The latter is achieved when co-cultured with peripheral blood (see figure).

As can be deduced from the name, FOP is a progressive disease that leads to ectopic bone formation with a fibrous component involved. The fibrous components are often ligaments and muscles which can transform into bone, thereby locking up joints and eventually leading to severely immobilized life and a shortened life expectancy. The mutation that causes FOP was described in 2006. A receptor of Bone Morphogenetic Proteins (BMPs), called ACVR-1, is mutated in all approximately 800 world-wide confirmed cases of FOP. In order to study FOP from patient-derived cells, however, clinicians are cautious to take biopsies from patients, since this may trigger bone formation. Therefore, patient-derived cell models are rare for FOP. And this is where cells from extracted teeth may become a valuable tool to study both bone formation and break-down since these are mandatorily extracted when the jaw joint of these patients lock.

The group in Amsterdam questioned whether both bone formation and bone break-down was altered in FOP patients using these cells. When using a TGF-beta inhibitor, that was previously shown to successfully inhibit increased bone formation in FOP, some of the bone formation parameters were slightly increased in FOP. However, the formation of osteoclasts, the cells that degrade bone, was inhibited especially in FOP- fibroblasts in the presence of the inhibitor.

The recent discovery of the ligand Activin A that specifically triggers bone formation by the mutated ACVR-1 in FOP patients by two different groups has excited the FOP research community and has evoked new hopes for a halt of heterotopic bone formation in FOP patients. Currently, a clinical trial has started based on preventing the binding of Activin A to the mutated ACVR-1. Also using the tooth-derived cell model, it was shown that Activin A especially triggers bone formation in  FOP patients. Studies that investigate the role Activin A in osteoclast formation by these FOP patients-derived tooth-associated fibroblasts are ongoing.

ADVERTISEMENT

The many of us that have undergone extraction of their wisdom teeth have probably never realized that instead of throwing this operational waste material in the bin, it can provide a wealth of information on fundamental processes of bone formation and bone break-down in health and disease. Ultimately, this could well be a model system to test medicine that on the one hand propagate bone formation and on the other hand inhibit the formation of osteoclasts.

Figure 1: Fibroblasts from teeth contribute to bone formation (red dots in the left panel).  Slender fibroblasts (light arrows) contribute to the formation of multinucleated osteoclasts (large arrows) that are formed from monocytes present in peripheral blood. Credit: Teun J. de Vries

These findings are described in the article entitled, Periodontal ligament fibroblasts as a cell model to study osteogenesis and osteoclastogenesis in fibrodysplasia ossificans progressiva, recently published in the journal Bone. This work was conducted by Teun J. de Vries, Ton Schoenmaker, Jolanda Hogervorst, and Siham Bouskla from ACTA, the University of Amsterdam and Vrije Universiteit Amsterdam, and Dimitra Micha, Tim Forouzanfar, Gerard Pals, Coen Netelenbos, E. Marelise W. Eekhoff, and Nathalie Bravenboer from VU University Medical Center, Amsterdam.

Comments

READ THIS NEXT

Detection On The Go For A Common Viral Pathogen

Human noroviruses are a leading cause of gastroenteritis globally and inflict a considerable public health burden. The viruses are easily […]

Gambling Addiction: The Sensible Years, Studied In Twins

For some young people, the transition to adulthood also means starting a career as a gambler. Researchers have discovered that […]

The World’s Biggest Killer: Pollution Kills Over 9 Million People Every Year

As more and more research is done, the harm done by pollution becomes ever clearer. A new report recently published […]

Catalysts In The Chemical Industry

The chemical industry influences all our lives daily, everything from the components in the screen you are reading this article […]

Google Earth: Maps And Satellite Images For Free

Google Earth is easily one of Google’s most amazing programs. The program uses a compilation of satellite imagery and photography […]

World Health Officials Stunned By US Resistance To Breast Feeding

At the World Health Assembly which took place this spring, a resolution intended to encourage the use of breast feeding […]

Work Productivity Loss In A Warming World: Developed Country Vs Developing Country

As an observed fact, global climatic warming since the Industrial Revolution has caused more frequent heat waves across the world. […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?