ADVERTISEMENT

Avoiding Pitfalls In Periodic Orbits of Maps With A Piecewise Approach

Numerical computation is widely recognized to be of great importance in many fields of science. Many conclusions in nonlinear science and complex systems have been drawn upon simulation on a digital computer. Although this importance is widely recognized, the way of computers work is, in general, not known in detail.

Let us start our discussion with the following example. Let be the following equation, known as a logistic map:

ADVERTISEMENT

The idea behind this equation is very simple. We start a simulation at stage k = 0. In this stage, we have our initial condition. Suppose that r = 4, and It is easy to calculate that in the next stage, we will get ¼. After the third iteration, the correct answer is going to be stuck — fixed — with the value of ¾.

Using a commercial software, we proceed with this calculation, and we can get the results in Figure 1. The red line and the black line are produced by the equations F(xk) = 4xk(1 – xk), while G(xk) = 4xk – 4x2k. Although the equations are mathematically equivalent, the computer produces a stable and fixed result for F and a chaotic behavior for G. Nonlinear dynamic theory and a branch of math based only on calculus and differential equations cannot explain this properly.

Figure 1: Simulation of the logistic map from two different computer realizations. Image courtesy Erivelton Geraldo Nepomuceno

In our recent study entitled “Interval computing periodic orbits of maps using a piecewise approach,” we recognize this situation and developed an approach to, at least, decrease this situation. The basic idea relies on the fact that the majority of numerical computations based on floating-point are built to guarantee a good result, or, in technical terms, a result within a precision according to the number of bits used, only for basic arithmetical operations.

ADVERTISEMENT

The example in Figure 1 presents two features that turn this example in a very challenging one. First, the computation is a set of basic arithmetic operations. Second and most important, there is a recurrence where a very tiny error in the beginning grows exponentially. In our paper, we examine some features of the function, which allows us to set bounds of the result with more consistency than other approaches. The function is seen as a piecewise function. In general, the proposed method has produced intervals that are significantly narrower than those obtained by Intlab (a Matlab toolbox) approach. However, it is also clear that our method requires a significantly larger number of iterates.

Related Study

In an accompanying article published in the same journal “Detecting unreliable computer simulations of recursive functions with interval extensions,” https://doi.org/10.1016/j.amc.2018.02.020, we used such ideas to show that some previous results that guarantee long simulations on a computer are not valid for current software and hardware. We also exploit the error propagation to compute the Lyapunov exponent, a usual feature to identify chaotic systems, in the article “Computation of the largest positive Lyapunov exponent using rounding mode and recursive least square algorithm”, https://doi.org/10.1016/j.chaos.2018.04.032.

Future Directions

We are confident that computers are incredible tools to develop science and technology. But we are also confident that we must understand the way that they work in order to be able to analyze and avoid pitfalls.

These findings are described in the article entitled Interval computing periodic orbits of maps using a piecewise approach, recently published in the journal Applied Mathematics and ComputationThis work was conducted by Erivelton G. Nepomuceno, Heitor M. Rodrigues Junior, and Samir A.M. Martins from the  Federal University of São João del-ReiMatjaž Perc from the University of Maribor and Beihang University, and Mitja Slavinec from the University of Maribor.

ADVERTISEMENT

Comments

READ THIS NEXT

Coal Pros And Cons

Coal pros and cons can be broken down into relatively cheap, widely available, and low capital investment for coal pros […]

Organoids Reproduce Metabolic Alterations Of Colorectal Cancer: A Good Tool To Choose The Best Drug Based On Tumor Stage

Colorectal cancer is considered to be one of the most commonly diagnosed cancers and it also has one of the […]

The Chemical Equation For Photosynthesis

The chemical equation for photosynthesis involves the input (reactants) of carbon dioxide, water, and sunlight to produce the outputs (products) […]

Easily Calculate 0.625 As A Fraction In The Simplest Form

Below we will cover how to calculate 0.625 as a fraction, giving you 5/8 as the simplest form of 0.625. […]

Oxidation For “Functionalized” C-H Compounds

The concept of C-H functionalization is a truly hot topic for contemporary chemistry and related sciences. This concept implies replacing […]

Using Biogas From Vinasse To Enable Sugarcane Bagasse Availability For Bioethanol Production

Recent environmental policies demand more and more biofuels, clean energy availability, and fewer pollutant emissions. In that sense, the ethanol […]

What Is Pi (Definitely Not Pie)?

If you remember anything from high school math, odds are you remember pi (and no, we don’t mean the delicious […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?