Antidepressant Discontinuation Syndrome

Depression is a highly prevalent, severely debilitating mental disorder that affects nearly 5% of the global population, and has a high risk of relapse. Commonly used to treat depression, antidepressant drugs are currently the most prescribed class of CNS medications globally.

However, overt side-effects markedly complicate antidepressant pharmacotherapy. For example, digestive and sleep disorders, headache, anxiety, and metabolic and reproductive dysfunctions are frequently associated with antidepressant treatment. In addition to such well-reported side effects of antidepressants, their discontinuation is also a growing health concern.

Antidepressant discontinuation syndrome (ADS) is a condition that can occur following the interruption, dose reduction, or discontinuation of antidepressant drugs. It is currently reported for all major antidepressants, often lasting for days or weeks, and even months. Patient groups at most risk of ADS include females, patients with affective disorders, patients taking higher doses or longer courses of antidepressants, those who reduced treatment more abruptly, and the elderly.

In general, ADS symptomology is complex and consists of several body-oriented and mental symptoms. The first cluster includes imbalance, vertigo, paresthesias, fatigue, headache, nausea, tremor, weight gain, diarrhea, and visual disturbances. Mental ADS symptoms include anxiety, low mood, insomnia, irritability, impaired cognition, anhedonia, mania, and psychosis. In many clinical signs, ADS resembles a classical drug withdrawal syndrome, commonly seen after discontinuation of drugs of abuse such as opioids. However, the two syndromes differ pathogenetically since the molecular mechanism of discontinuation form opioids and from antidepressant is connected with different neurotransmitter systems. ADS is not connected directly with the reinforcing system of the brain and antidepressants do not seem to cause addiction.

Nowadays preventing ADS is based on minimizing health risks associated with discontinuation of antidepressants. Hence, most of the therapeutic strategies involve well-planned tapering by gradually decreasing antidepressant dose based on the half-life of specific antidepressants or switching to other, better-tolerated medication.

Unfortunately, our ability to understand causes, drug interactions, as well as the role of genetic and environment modulation of ADS, remains limited since clinical literature is sparse, thereby necessitating the development of animal (experimental) models of ADS. While animal models are an indispensable tool in translational biological psychiatry research, they have been only recently applied to ADS.

Recent rodent studies examining commonly used antidepressants (e.g., fluoxetine, citalopram, sertraline and paroxetine) note altered serotonin and other monoamines of the brain. Complementing rodent models, primates more closely relate to humans and have multiple genetic polymorphisms, making them suitable for studying long-term antidepressant action. Moreover, preclinical ADS studies can also include non-mammalian models and even invertebrates. For instance, an aquatic teleost species, zebrafish (Danio rerio) is rapidly gaining popularity in neuropharmacology and toxicology, also showing overt drug withdrawal-like responses and sensitivity to antidepressants.

The final goal of research on animal models and neurotransmitter systems is the new targets for drug therapy. New potential drugs can help decrease the negative effects of ADS or even eliminate them. Interestingly, some novel antidepressants have fewer or no ADS-like effects. For example, agomelatine is not known to cause ADS, likely due to high selectivity to melatonin receptors, which regulate circadian rhythms. It is, therefore, possible that new classes of drugs will be found while analyzing all the molecular and genetic alterations which happen on the brain during therapy and after its discontinuation. Thus, developing new models of ADS can create productive momentum to investigate this disorder in detail, as part of bigger clinical and translational efforts to improve our understanding of affective/mood disorders and their therapy.

These findings are described in the article entitled Understanding antidepressant discontinuation syndrome (ADS) through preclinical experimental models, recently published in the European Journal of Pharmacology. This work was conducted by Konstantin N. Zabegalov, Tatiana O. Kolesnikova, and Sergey L. Khatsko from the Ural Federal University, Andrey D. Volgin, Oleg A. Yakovlev, Darya A. Meshalkina, Konstantin A. Demin, and Raul R. Gainetdinov from St. Petersburg State University, Tamara G. Amstislavskaya from Novosibirsk State University, Polina A. Alekseeva from Almazov National Medical Research Centre, Ashton J. Friend and Allan V. Kalueff from Southwest University (China), and Wandong Bao from Southwest University.

About The Author

Allan V. Kalueff

PhD in physiology from RUDN University (2002) and in anatomy from Tampere University (2005). Current President of ISBS, Director of ZENEREI Research Center (USA), Distinguished Chair Professor of Neuroscience and Pharmacology at GDO University (China) and Professor of Neuroscience at St. Petersburg State University and Ural Federal University (Russia). Authored over 160 papers and 12 books in the field of neuroscience and biological psychiatry. H-index 48, with over 7500 citations.

Andrey D. Volgin

Andrey is a researcher at the State scientific-research Institute of Basic medicine and Physiology.

Konstantin A. Demin

Konstantin is a research assistant and Ph.D. candidate at the Saint Petersburg State University.

Comment (1)

  1. “Discontinuation” syndrome?? Try *withdrawal*!! That is a G-rated, dumbing down of an obvious phenomenon to shield pharmaceutical companies and doctors from ire and liability because no one will admit that antidepressants are in fact ADDICTIVE and that many patients do not stand a chance of successfully quitting these drugs without serious consequences!

Speak Your Mind!

READ THIS NEXT

Polar Bears Are Starving Due To Global Warming, Study Finds

One of the most immediate effects of Global Warming is its negative impact on life in the poles. Carnivores, particularly polar bears, are going hungry because of global warming. The impacts of global warming in polar bears have recently become more visible for the general public, partly thanks to the video of a bear who […]

When Is Hawaii’s Hurricane Season?

Hawaii’s hurricane season runs from July to December, which means if you are planning a big trip to Hawaii it is certainly something to think about. With that being said, the Hawaiian islands are usually at very low risk of getting hit by hurricanes, and seldom even do get hit by hurricanes historically. Hurricanes are very […]

Asia Continent: Facts For Kids

The continent of Asia boasts the oldest civilizations, the largest population, and the most populous cities. Asia is the largest of the 7 continents with over 4.4 billion people calling it home and speaking nearly 2,200 languages. It’s never too early to start learning about Earth’s continents. Because we’re all in favor of early education […]

Machine-To-Machine Communication: Challenges And Future Opportunities

With the advent of machine-to-machine communication, the autonomous communication of smart devices will likely be a part of the human ecosystem/society in the coming years. Specifically, machines will interact to make a “smarter society,” where they can intelligently send messages for the actualization of various operations under our very eyes. This has interesting implications. Among others, doctors can get […]

Thermophoretic Effects On Capillary Transport Of Nanofluids

Nanofluid is a dilute suspension of particles, varying in size from 1 nm to 100 nm, suspended in a base fluid (e.g. water). Compared to base fluids, nanofluids distinctively possess superior thermophysical attributes like thermal conductivity, specific heat capacity. Hence, they can be utilized for their enhanced thermophysical properties in the narrow confinements, like heat […]

Soil Organic Carbon Stocks Mapping In Mountainous Subtropics Using A 3D Mixed Model With Upscaling Capabilities

Published by Moritz Laub & Sergey Blagodatsky Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim These findings are described in the article entitled A mixed model for landscape soil organic carbon prediction across continuous profile depth in the mountainous subtropics, recently published in the journal Geoderma (Geoderma 330 (2018) 177-192). This work […]

The Photosynthesis Process: Step By Step

How do plants eat? They do not have mouths and they cannot forage or hunt, so how do they get their food? Unlike animals like humans, dogs, or cats who must get their food from external sources, plants are capable of creating their own supply of food from inorganic sources of carbon. Plants can take energy […]