ADVERTISEMENT

Water Deposition And Possible Water Cycles On Comet 67P/Churyumov-Gerasimenko

Whether called “dirty snowballs” or “icy dirtballs,” comets are rich in water ice. However, until today, little is known about the nature of cometary water ice, such as its origin, formation, and evolution process. For example, sufficient water gas can be found in the coma, yet all observed comet nuclei appear dark and have low reflectivity.

Only a limited amount of water ice has been detected on some cometary surfaces. Why is that? Why are we able to detect water but can hardly see it on the nucleus surface? Where is the ice hiding?

ADVERTISEMENT

The orbiter Rosetta may provide us with clues to clear up this mystery. With the in-situ, long-term observation and measurement, water ice has been identified in small patches or bright spots on the surface of Comet 67P/Churyumov-Gerasimenko. Furthermore, thin frosts sublimating close to receding shadows have also been observed. In order to explain the observed ice on the cometary surface, possible theories of the water ice cycle on the comet have been proposed:

  1. Ice sublimation from the subsurface layer condenses in the uppermost layer after sunset;
  2. The backflux from the inner coma deposits on the cold area.

The former — subsurface ice sublimation mechanism — has been widely accepted and adopted by many recent works about Comet 67P/Churyumov-Gerasimenko, while the latter has not been extensively explored. Most studies consider coma deposition mainly for thermo-physical models of the nucleus because the condensing gas molecules may heat the surface by releasing the latent energy. Some simplified models have been used to examine the mass transport around the nucleus by considering the condensation on the shadowy parts of the nucleus surface, yet more precise and modern models for simulation and comparison with observational results are still needed.

A recent study (1) has approached the condensation process of 67P’s inner gas coma numerically by introducing rarified gas dynamics and data from Rosetta. The authors designed several cases to see how the water deposition distributes with the varying surface conditions such as different illuminated regions and terrains. The simulation results show that, firstly, it is more likely to have water vapor condensing in shadowy regions on the dayside rather than the nightside of the nucleus surface. That is because the deposition comes from the backflux, which can only be gas molecules reaching the surface from the vicinity due to intermolecular collisions. The nightside hardly has outgassing activities thus fails to provide a certain amount of backflux. Secondly, the neck region of the comet is another preferable place for water deposition because of the concave terrain.

Image republished with permission from Elsevier from https://doi.org/10.1016/j.pss.2018.04.014

Lastly, the deposition acquired from coma condensation in the near-perihelion environment shows comparable to the ice accumulation from the condensation of subsurface sublimation, which suggests that the coma condensation mechanism may also play an important role in the water cycle of 67P during its perihelion passage.

ADVERTISEMENT

These findings are described in the article entitled Water vapor deposition from the inner gas coma onto the nucleus of Comet 67P/Churyumov-Gerasimenko, recently published in the journal Planetary and Space Science. This work was conducted by Ying Liao from Macau University of Science and Technology, I. L. Lai from the National Central University (Taiwan), and her former colleagues from the University of Bern, Switzerland.

Comments

READ THIS NEXT

Hydrogen Bonding: From Biological Systems To Interstellar Medium

Intermolecular interactions are very vital in the elucidation of structure and properties of many biological molecules like water, DNA, proteins, […]

Why Do South Asians Have A Higher Risk Of Developing Type 2 Diabetes And Heart Disease Than White Europids?

More and more people are suffering from type 2 diabetes and cardiovascular disease. These metabolic diseases are typically associated with […]

Increases In Minimum Wages Lead To Decreases In Smoking

Published by Paul Leigh University of California Davis School of Medicine and Center for Poverty Research These findings are described […]

Mycobacterium Avium Subspecies Paratuberculosis As A Soil Bacteria And ALS Clusters In Outdoor Sports Players

Trevor Nace very kindly reached out to me to write about my recently-published hypothesis proposing that some cases of amyotrophic […]

Resolving Nightmares Using A Lucid Dreaming Technique

Imagine that you could become aware that you were dreaming, or “lucid,” in your dreams at any time. Countless researchers […]

Looking Beyond Standard Model Cosmology: Making A Case For Development Of Observational Tools For Alternative Models

A typical galaxy contains billions and trillions of stars, like our closest neighbor, the Sun. In the field of Cosmology, […]

Substrates On Which Lichens Grow Appear To Act As Reservoir Of Lichen Photobionts

On the 10th September 1867, at a meeting of the botanical section of the Swiss Society for Natural Sciences, Simon […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?