ADVERTISEMENT

The Surface Roughness Of 433 Eros From The NEAR Laser Rangefinder

The Near-Earth (not hazardous to Earth) asteroid 433 Eros was explored by the NEAR-Shoemaker spacecraft in 2000-2001. This mission, built and designed by the Johns Hopkins Applied Physics Laboratory, was the first spacecraft to orbit and land on an asteroid. Onboard the NEAR-Shoemaker spacecraft was the NEAR Laser Rangefinder (NLR), which used a laser that bounced off of the asteroid’s surface to measure the shape and topography of 433 Eros.

Since the NEAR-Shoemaker mission, the Hayabusa spacecraft has orbited and mapped the asteroid 25143 Itokawa and now, in 2018, two missions will be visiting and orbiting two new asteroids. Hayabusa2 is currently orbiting 162173 Ryugu, and the OSIRIS-REx mission will arrive at asteroid 101955 Bennu this fall.

ADVERTISEMENT

One of the important parts of visiting multiple asteroids is comparing each asteroid to other asteroids we have visited in the past; this gives us important insights into the surface geology and interior structure of each of these asteroids. As many of these asteroids are of different sizes (Itokawa is only 0.5 x 0.2 x 0.3 km), scientists look for a quantitative method to compare the surfaces of asteroids to one another. One such method is surface roughness, which is simply the change in topography over a given horizontal length-scale.

In this paper, we (Susorney and Barnouin) used the topography and shape data from NLR to produce the first global surface roughness maps of an asteroid. These maps were used to investigate the surface geology of Eros and to compare Eros to previous limited studies of the surface roughness of other asteroids and to global studies of the Moon.

On Eros, the surface roughness is dominated by the geologically recent Shoemaker impact which produced many boulders that increased surface roughness at smaller horizontal scales. This impact also shook the asteroid erasing craters under 100 m in diameter, which, in turn, reduces surface roughness at longer scales.

Credit: The Bruce Murray Space Image Library, Creative Commons

The surface of Eros was discovered to be very fractal (similar to the Moon), which means that as you increase the horizontal length-scale the surface roughness was measured over, the surface roughness increases at a specific rate. At horizontal scales under 0.5 km, the topography of the Moon and Eros are quite similar, unlike the surface of 25143 Itokawa (where surface roughness was measured for smaller regions), which looks completely different than Eros.

ADVERTISEMENT

This global dataset for Eros will be a valuable tool to compare to the data returned from 162173 Ryugu and 101955 Bennu in the next year so we can understand more about the diversity of asteroids in our solar system.

These findings are described in the article entitled The global surface roughness of 433 Eros from the NEAR laser rangefinder, recently published in the journal IcarusThis work was conducted by Hannah C.M. Susorney from The Johns Hopkins University and the University of British Columbia, and Olivier S. Barnouin from The Johns Hopkins University Applied Physics Laboratory and The Johns Hopkins University.

Comments

READ THIS NEXT

Genetic Selection For Fast-Growing Traits Among Haliotis Rufescens Mollusks

The increase in the human population and the overexploitation of fishery resources means that aquaculture is becoming more important. Projections […]

Fuzzy Model Of Residential Energy Decision-Making: Considering Behavioral Economic Concepts

As residential buildings can account for up to 50% of the total energy consumption and greenhouse gas (GHG) emissions in […]

The Friend Of My Enemy Is My Enemy: Resistance-Conferring Symbionts As A Challenge For Biological Control

Tiny parasitic wasps are important natural enemies of aphids and, therefore, a farmer’s best friends. They are bred in great […]

Data-intensive Approaches To Creating Innovation For Sustainable Smart Cities

Located at the complex intersection of economic development and environmental change, cities play a central role in our efforts to […]

Scientists Just Developed A Computer Out Of Living Human Cells

A team of scientists from Zurich has managed to create a biocomputer using human cells. A biocomputer is a system […]

Steps Toward A Long-term Record Of Dust, Smoke And Other Atmospheric Aerosols From Space

While the word ‘aerosol’ conjures up images of spray cans, to atmospheric scientists the term refers to something different: small […]

Solubility In Sub- And Supercritical Ethanol

Extraction by subcritical and supercritical ethanol has been applied to many materials for the recovery of useful products from them. […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?