Effects Of Variable Eccentricity On The Climate Of An Earth-Like World

Jupiter plays an important role in the orbital dynamics of many celestial bodies in the solar system especially for Mars whose axial tilt varies over 45 degrees on timescales of 100,000s of years and whose eccentricity varies on similar timescales. Obviously, Mars’ climate is greatly influenced by these changes. Jupiter’s influence on Earth’s axial tilt could be similar if not for Earth’s large moon while Earth’s eccentricity would be more variable if Jupiter’s orbit were closer to Earth.

Using The Goddard Institute for Space Studies ROCKE-3D (Way et al. 2017) planetary General Circulation Model (a GCM derivative of GISS’ ModelE used for Earth Climate Simulations) we investigate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earth’s orbit. Similar exoplanetary systems are likely to be found in the future and the climate stability of such Earth-like worlds is of interest to Astrobiologists. The orbital eccentricity variations of the Earth-like world used in the GCM were calculated with an analytical orbital evolution model (Georgakarakos et al. 2016).

The GCM simulations utilized a fully coupled ocean and the longest simulation ran for 7000 years, possibly the longest such simulation at this resolution (4×5 degree horizontal resolution, 20 atmospheric layers, and 13 ocean layers) ever done for another planet and one of the very few ever done for any planet with a fully coupled ocean. This overturns the notion that these types of simulations can only be used to look at snapshots (~100s of years) of an exoplanet’s climate and opens the door to the potential characterization of a discovered exoplanet’s habitability over a full Milankovitch cycle (~40,000 years for Earth).

The exoplanet community mostly avoids fully coupled oceans because they believe they are too computationally expensive and time-consuming to run. Yet they are possible using lower resolution simulations (where warranted) such as these on as few as 23 high-performance computing cores. We used Intel’s Haswell chipset. Of course, an ensemble of such simulations could take advantage of a high-performance computing platform such as NCCS as we have done herein.

The fully coupled ocean is important because it moderates the extremes in climate that one would otherwise obtain with simpler ocean models.  For example, at the highest eccentricity (0.283) this planet at closest approach (periapsis) is receiving 1.8 times the sunlight that Earth receives and at its furthest 0.61 times (apoapsis).

Yet this world does not go into a moist or runaway greenhouse (think Venus!) at closest approach nor does it ever freeze over at its most distant (think Mars!). If this world received either of those amounts of sunlight continually they would wreck the climate from the standpoint of habitability (the persistence of surface liquid water). This shows how considering the ocean makes a big difference in the assessment of habitability.

This research is also the most recent demonstration of the NExSS “system science” approach that couples tools from different disciplines. Here we used an Earth climate model driven by a planetary orbital evolution model. Something that had not been attempted previously because of the computational and run-time costs mentioned above.

References

Way, M., and Georgakarakos, N. 2016, Effects of Variable Eccentricity on the Climate of an Earth-like World, Astrophysical Journal Letters, 835, L1.

Georgakarakos, N., Dobbs-Dixon, I., Way, M.J. 2016, Long-term evolution of planetary systems with a terrestrial planet and a giant planet, MNRAS, 461, 2, 1512, doi:10.1093/mnras/stw1378

Way et al. 2017, Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets, Astrophysical Journal Supplement Series 231:12. (https://arxiv.org/abs/1701.02360)

About The Author

Michael Way

I enjoy working on new challenges and applying my professional expertise across a broad range of disciplines. In my graduate student years I enjoyed working in Information Technology consulting solving disparate problems in both industry and academia. At Princeton University I worked at the interface between high performance computing, Information Technology and the Astrophysical Sciences. In the past 15 years I have worked inside of NASA as a Cosmologist, Planetary Scientist, Computer Scientist, Historian of Science and in Information Technology. Currently my focus is on the three dimensional modeling of planetary and exoplanetary atmospheres to better understand the history of terrestrial planets within our solar system and their possible connections to the exoplanetary worlds Astronomers have encountered through their observations. At the same time my Information Technology experience continues to be put to use on a daily basis to meet the IT security requirements of the US Federal Government and NASA while balancing my local organization's needs.

Speak Your Mind!

READ THIS NEXT

Facing Visual Pollution In Urban Areas

Going for an outdoor walk in our cities for taking fresh air, enjoying a panorama, sight seeing a monument, or shopping and having a drink can be a great recreational experience. Some features that come across our field of view, though, can be disturbing or irritating, engendering a negative sensation. Imagine you are sitting in a […]

Meiosis: Metaphase 2, Anaphase 2, Prophase 2

Meiosis refers to the process by which a single diploid cell divides into 4 haploid cells, each genetically distinct from the parent cell. Meiosis is an important part of sexual reproduction in eukaryotes as it provides the raw genetic materials that combine to create a diploid zygote. Unlike mitosis, which is the normal process of […]

SIOC Scientists Upgrade The Mechanism Of Pictet–Spengler Reactions

First discovered in 1911, the Pictet–Spengler reaction ranks among the most fundamental reactions in organic chemistry. It has found broad applications in the syntheses of indole-derived natural products and pharmaceuticals. For example, a Pictet–Spengler reaction is involved as one key step in the synthesis of Cialis, a drug for treating erectile dysfunction (ED) or benign […]

Creating Artificial Life: Choosing The Right Container

All of us, at some point in our lives, have pondered the perplexing notion of life: What does it mean to be alive? How did life emerge on mother Earth? Is there life in the rest of the universe? These are simple questions without simple answers. To exemplify their complexity, scientists are still reaching a […]

Elusive Toxicity Of Silicon Carbide Nanomaterials

In the broadest sense, nanomaterial is defined as a structure that is within the size of 1-1000 nanometers, i.e., 10-9 – 10-6 meters, in two or three dimensions. The nanoscale size of these materials holds numerous advantages over their bulk counterparts such as an increased surface-area-to-volume ratio along with unique physical, chemical, and optical properties. […]

What Does CBD Stand For?

CBD stands for cannabidiol, a compound found in weed or marijuana plants that relieves pain, reduces anxiety, helps sleep, etc. The compound CBD (Cannabidiol) is one of 113 identified cannabinoids found in cannabis sativa. One of the main components of marijuana is cannabidiol (CBD) and it is slowly becoming a popular item to treat ailments […]

Rising Sea Levels Could Destroy Hundreds Of Thousands Of Florida Homes Over The Next Few Decades

Over the next thirty years, more than 300,000 homes throughout Florida could experience chronic flooding and destruction, according to a report released by the Union of Concerned Scientists. Southern Florida is the primary flood zone, full of lowland plains that are at risk of being pushed underwater by rising sea levels. Currently, about 6 million […]