ADVERTISEMENT

Modeling Collective Animal Behaviors And Decision Making

Every day there are flocks of birds, schools of fish, and colonies of ants, etc. that all exhibit the amazing power to move coherently together, to make a smart collective choice. How can they do it? This question has inspired generations of scientists to investigate this phenomenon- called collective animal behaviors.

In recent literature, the study of how animals move together is classified as collective animal motion. In 1995, a physicist Vicsek et al. proposed a “Self-propelled particle (SPP)” model to explain how a swarm of particles with constant speed can move in a common direction. It is not straightforward to see how, because each one particle just can process local information and lives in a noisy environment. In the model, they assumed a very simple interaction rule for each particle, that each one just averages the direction of its local neighbors at each time step as its new direction in the next time step.

ADVERTISEMENT

They found that if the population density is higher than a critical value and the noise is lower than a critical value, the system exhibits some critical behaviors. At some critical points, it will switch from a disordered state in which many particles proceed their own direction to an ordered one in which all the particles moving in one common direction.

If a group of animals is given two or more options to choose, like two sheltering sites for an aggregation of cockroaches, two paths for a school of fish and two or more sheltering sites for a colony of ants, how do they make collective decisions? The study of this phenomenon is classified as animal collective decision-making. In this field, a well-recognized interaction rule is called quorum response, which is a nonlinear interaction rule and observed across many different species of animals. In quorum response rules, if an option is opted by more than a threshold number of individuals, this option becomes very likely chosen. On the other hand, if this option is opted by less than a threshold number of individuals, it will be neglected by this individual most of the time. This interaction is believed to make the animal group reach a consensus decision and at the same time, enhance the decision efficiency.

In our paper, we found that quorum response rules can also be applied in the field of collective animal motion. We proposed a model and assumed that each individual makes a directional decision from many (8 in the paper) choices based on its local neighbors’ moving directions. In our model, we found that this new type of interaction also results in the critical behaviors showed in SPP model. The group switches from a disordered state to an ordered state at some critical point. The analytic form of this interaction suggested an opportunity to apply a mean field theory in 1D with globally interacting individuals, so we can estimate the average time period between changes in the group direction. The results provide a limiting bound to simulation results.

Information entropy, proposed by Shannon in 1948, is a core concept in information theory. We applied it as a new order parameter to study a 2D model. Compared with the previous order parameters such as alignment, we find that besides the global order, information entropy can also capture the structural features of the local order of a system.

ADVERTISEMENT

These findings are described in the article entitled Application of quorum response and information entropy to animal collective motion modeling, published in the journal Complexity. This work was led by Feng Hu from Chongqing Normal University.

Comments

READ THIS NEXT

How Tall Was Jesus: What Science Says

Many people wonder how tall Jesus was. While this is impossible to be 100 percent sure, below we estimate that […]

Socially Thermoregulated Thinking: Temperature Fluctuations Drive Our Need For Loved Ones

Published by Hans IJzerman UniversitĂ© Grenoble Alpes, France These findings are described in the article entitled Socially thermoregulated thinking: How […]

Research Reports Bacteria Harpoon New DNA To Speed Evolution

Bacteria are known for their ability to rapidly evolve and respond to new threats, which is why drug-resistant bacteria have […]

Boundary Layer Control On Mineral Reactivity In Soils And Rocks

It starts when the rain reaches the ground and percolates into the soil, infiltrating the first layers of the Earth’s […]

Pharynx: Function And Definition

You likely have heard of a larynx but do you know what a pharynx does and where it is? The […]

Study Finds Those Who Have Autism More Likely To Suffer From Depression

A new study done by researchers at the University of Bristol in the United Kingdom implies that depression is up […]

Racial Disparity In Surgery For Esophageal Cancer

Surgery for esophageal cancer (esophagectomy) is considered standard of care for patients with early-stage disease and can provide long-term survival […]

Science Trends is a popular source of science news and education around the world. We cover everything from solar power cell technology to climate change to cancer research. We help hundreds of thousands of people every month learn about the world we live in and the latest scientific breakthroughs. Want to know more?