About The Author

I lead the Sustainable Energy Systems Integration and Transitions (SESIT) Group at the University of Victoria. Our group research focuses on energy systems integration – the process of coordinating the operation and planning of our energy systems over a variety of spatial-temporal scales and infrastructure systems (transport, buildings, electricity, water). This work involves the development and application of energy system software, designed to address research and policy questions related to variable renewable energy integration, demand response initiatives, utility-scale and behind-the-meter storage technologies, and electric vehicle integration. We use a range of approaches including optimization and machine intelligence techniques to gain insights into the sustainable energy system transformation. My research interests include:

  • Representing grid-edge actors and their interaction with the energy system
  • Integrating the transport, power, buildings and water systems
  • Developing a spatially and temporally broad perspective of our energy system

The Low-Carbon Energy System Transition Under Alternative Storage And Hydrogen Cost Projections

As the costs of wind and solar technologies plummet and global climate change consensus grows, wind and solar development pipelines have ballooned. Analyses of future energy systems indicate that wind and solar energy could account for 35-65% of total electricity supply by 2050 and 47-86% of total electricity supply by 2100 if carbon policies are