Italo Tempera

Dr. Tempera’s research focuses on understanding the functional links between epigenetic domains, chromosome conformation and gene expression in the context of cancer. Chromatin composition and organization represent an important element in regulating genome function. The analysis of chromosome conformation in yeast and Drosophila promoted the view of the genome as a set of physical domains that correlate with the epigenetic domains, suggesting a strong link between genome structure and genome function.

Our goal is to understand how the chromatin three-dimensional structure affects gene expression and how cancer can alter this process.

In particular we study the role of epigenetic modifications into the mechanism regulating Epstein-Barr virus (EBV) latency since EBV latent infection has been causally linked to a variety of B-cell and epithelial malignancies. EBV is able to establish a life-long latent infection persisting in memory B-lymphocytes as a chromatin-associated multicopy mini-chromosome adopting different gene expression programs that are referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization and depend on the host cell type and the nature of the tumor from which EBV is isolated. Hence, EBV represents a useful system for gaining a new insight into the basic understanding of the role of chromatin architecture in gene expression regulation in mammals. EBV studies are also instrumental in clarifying how cancer manipulates the epigenome for continued neoplastic growth and adaptability.

Targeting PARP1 Activity May Be An Effective Treatment For Some Epstein-Barr Patients

The Epstein-Barr virus (EBV) is a member of the herpes virus family and is one of the most common human viruses. Up to 95% of people will get infected with EBV at some point in their lives, with the virus […]