Gary J. Gorbsky | Science Trends

Gary J. Gorbsky

Research in my laboratory focuses on the basic mechanisms of how chromosomes assemble and move during cell division, in both normal cells and cancer cells. We are specifically interested in a system in cells that makes sure that the copies of the 46 chromosomes are distributed equally to each of the dividing cells. This checkpoint system works at a specific phase in cell division when the duplicated chromosomes have moved to the middle of the cell along track-like structures called spindle microtubules. The results of research in my laboratory have made major contributions to understanding the how this checkpoint system works. Our studies have discovered that the checkpoint provides a signal to the cell to prevent the chromosomes from segregating until it is sure that the chromosomes are all in the right place. Only when all the chromosomes are correctly attached to the spindle microtubules and aligned properly in the cell is the checkpoint signal turned off and the chromosomes allowed to separate. Thus, a single unattached chromosome can block the segregation of all the others. The way in which the checkpoint signal is produced and turned on and off properly is a consequence of a remarkably complex set of protein interactions. By using advanced techniques of fluorescence microscopy, we are able to study in real-time the interactions of the proteins involved in checkpoint pathway by actually visualizing them in living cells. In addition, we use modern approaches in molecular biology and biochemistry to study the functional interactions of these proteins.

Predicting Growth In Cancer Stem Cells

Cancer is a frightening and thorny adversary. Therapies to battle human cancer are frequently harsh with debilitating side effects. But often, these initial therapies are successful in destroying the bulk of tumor cells and driving cancer into remission. However, in […]